
Jupyter Notebooks

Workflow Building

Pipelines

Tools

Serving

Metadata
Kale

Fairing

TFX

KF Pipelines

HP Tuning

Tensorboard

KFServing

Seldon Core

TFServing, + Training Operators
Pytorch

XGBoost, +

Tensorflow

Prometheus

Kubeflow: End to End ML Platform
Animesh Singh

MPI

MXNet

©	2019	IBM	Corporation	

Animesh	Singh		
STSM	and	Chief	Architect	-	Data	and	AI	Open	Source	
Platform	

o  CTO,	IBM	RedHat	Data	and	AI	Open	Source	Alignment	
o  IBM	Kubeflow	Engagement	Lead,	Kubeflow	Committer	
o  Chair,	Linux	Foundation	AI	-	Trusted	AI	
o  Chair,	CD	Foundation	MLOps	Sig	
o  Ambassador,	CNCF	
o  Member	of	IBM	Academy	of	Technology	(IBM	AoT)	

Kubef low
github.com/kubeflow

Your Speaker Today:

CODAIT	

2

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

Kubeflow: Current IBM Contributors

Christian Kadner

Weiqiang Zhuang Tommy Li Andrew Butler

Jin Chi He

Feng Li

Ke Zhu Kevin Yu

IBM is the 2nd Largest Contributor

IBM is the 2nd Largest Contributor

IBMers contributing across projects in Kubeflow

Kubeflow Services

High	Level	
Services	

	

Low	Level	APIs	/	Services	

Katib	

Pipelines	

Notebooks	

TFJob	 PyTorchJob	

Jupyter	CR	

Seldon	CR	

Kubebench	

Pipelines	CR	

Argo	

Study	Job	

MPIJob	

Spark	Job	

KFServing	

TFX	 Developed	By	Kubeflow	 Developed	Outside	Kubeflow	

Adapted from Kubeflow Contributor Summit 2019 talk: Kubeflow and ML
Landscape (Not all components are shown)

Kubernetes	API	Server	

Is
tio

	M
es
h	
an

d	
G
at
ew

ay
		

kubectl apply -f tfjob

Community is growing!

8	

Multi-User Isolation

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

ML Lifecycle: Build: Development, Training and HPO

Develop (Kubeflow Jupyter Notebooks)

–  Data	Scientist	

–  Self-service	Jupyter	Notebooks	provide	faster	model	experimentation	

–  Simplified	configuration	of	CPU/GPU,	RAM,	Persistent	Volumes	

–  Faster	model	creation	with	training	operators,		TFX,	magics,	workflow	automation	(Kale,	Fairing)	

–  Simplify	access	to	external	data	sources	(using	stored	secrets)	

–  Easier	protection,	faster	restoration	&	sharing	of	“complete”	notebooks	

–  IT	Operator	

–  Profile	Controller,	Istio,	Dex	enable	secure		RBAC	to	notebooks,	data	&	resources	

–  Smaller	base	container	images	for	notebooks,	fewer	crashes,	faster	to	recover	

Develop (Kubeflow Jupyter Notebooks)

12	

Distributed Training Operators

13	

Distributed
Training Operators

14	

 Distributed Tensorflow Operator

•  A	distributed	Tensorflow	Job	is	collection	of	the	following	processes	
o  Chief	–	The	chief	is	responsible	for	orchestrating	training	and	performing	tasks	like	checkpointing	the	
model	

o  Ps	–	The	ps	are	parameters	servers;	the	servers	provide	a	distributed	data	store	for	the	model	
parameters	to	access	

o Worker	–	The	workers	do	the	actual	work	of	training	the	model.	In	some	cases,	worker	0	might	also	
act	as	the	chief	

o  Evaluator	-		The	evaluators	can	be	used	to	compute	evaluation	metrics	as	the	model	is	trained	

Distributed MPI Operator - AllReduce

•  AllReduce	is	an	operation	that	reduces	many	
arrays	spread	across	multiple	processes	into	a	
single	array	which	can	be	returned	to	all	the	
processes	

•  This	ensures	consistency	between	distributed	
processes	while	allowing	all	of	them	to	take	on	
different	workloads	

•  The	operation	used	to	reduce	the	multiple	
arrays	back	into	a	single	array	can	vary	
and	that	is	what	makes	the	different	options	
for	AllReduce	

Hyper Parameter Optimization and
Neural Architecture Search - Katib

•  Katib:	Kubernetes	Native	System	for	Automated	
tuning	of	machine	learning	model’s	
Hyperparameter	Turning	and	Neural	
Architecture	Search.	

•  Github	Repository:		
https://github.com/kubeflow/katib	

	
	
	

•  Hyperparameter	Tuning	
q  Random	Search	
q  Tree	of	Parzen	Estimators	(TPE)	
q Grid	Search	
q Hyperband	
q  Bayesian	Optimization	
q  CMA	Evolution	Strategy	

•  Neural	Architecture	Search	
q  Efficient	Neural	Architecture	Search	(ENAS)	
q Differentiable	Architecture	Search	(DARTS)	

Katib

18	Think	2020	/	DOC	ID	/	Month	XX,	2020	/	©	2020	IBM	
Corporation	

❑  Rollouts:
Is this rollout safe? How do I roll
back? Can I test a change
without swapping traffic?

❑  Protocol Standards:

How do I make a prediction?
GRPC? HTTP? Kafka?

❑  Cost:
Is the model over or under scaled?
Are resources being used efficiently?

❑  Monitoring:

Are the endpoints healthy? What is
the performance profile and request
trace?

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

❑  Frameworks:
How do I serve on Tensorflow?
XGBoost? Scikit Learn? Pytorch?
Custom Code?

❑  Features:

How do I explain the predictions?
What about detecting outliers and
skew? Bias detection? Adversarial
Detection?	

❑  How do I wire up custom pre and

post processing	

ML Lifecycle: Production Model Serving

❑  How do I handle batch

predictions?

❑  How do I leverage standardized
Data Plane protocol so that I can
move my model across MLServing
platforms?

●  Seldon	Core	was	pioneering	Graph	Inferencing.	
●  IBM	and	Bloomberg	were	exploring	serverless	ML	lambdas.	IBM	gave	a	talk	on	

the	ML	Serving	with	Knative	at	last	KubeCon	in	Seattle	
●  Google	had	built	a	common	Tensorflow	HTTP	API	for	models.	
●  Microsoft	Kubernetizing	their	Azure	ML	Stack	

Experts fragmented across industry

●  Kubeflow	created	the	conditions	for	collaboration.	
●  A	promise	of	open	code	and	open	community.	
●  Shared	responsibilities	and	expertise	across	multiple	companies.	
●  Diverse	requirements	from	different	customer	segments	

Putting the pieces together

●  Founded by Google, Seldon,

IBM, Bloomberg and Microsoft	

●  Part of the Kubeflow project

●  Focus on 80% use cases -

single model rollout and update

●  Kfserving 1.0 goals:

○  Serverless ML Inference

○  Canary rollouts

○  Model Explanations

○  Optional Pre/Post

processing

Model Serving - KFServing

Manages the hosting aspects of your models

•  InferenceService	-	manages the lifecycle of

models
	

•  Configuration	-	manages history of model
deployments. Two configurations for default and
canary.

	
•  Revision	-	A snapshot of your model version

•  Route	-	Endpoint and network traffic management

Route Default
Configuration		

Revision	1

Revision	M	90
%

KFService	

Canary
Configuration		

Revision	1

Revision	N	10
%

KFServing: Default and
Canary Configurations

Model	Servers	

							-		TensorFlow

 - Nvidia TRTIS

 - PyTorch

 - XGBoost

 - SKLearn

 - ONNX

				

	

	

							Components:	

•  									-		Predictor, Explainer, Transformer
(pre-processor, post-processor)

							Storage	
	-		AWS/S3

 - GCS

 - Azure Blob

 - PVC

Supported Frameworks, Components and
Storage Subsystems

GPU Autoscaling - KNative solution

Ingress	

Activator	
(buffers	requests)	

Autoscaler	

Queue	
Proxy	

Model	
server	

when	scale	==	0	or	handling	
burst	capacity	

when	scale	>	0	

metrics	

●  Scale	based	on	#	in-flight	requests	against	expected	concurrency	
●  Simple	solution	for	heterogeneous	ML	inference	autoscaling	

scale	

metrics	

0...N	Replicas	

API	
Requests	

But the Data Scientist Sees...

●  A pointer to a Serialized Model File
●  9 lines of YAML
●  A live model at an HTTP endpoint

= http

●  Scale to Zero
●  GPU Autoscaling
●  Safe Rollouts
●  Optimized Serving Containers
●  Network Policy and Auth
●  HTTP APIs (gRPC soon)
●  Tracing
●  Metrics

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "flowers-sample"
spec:
 default:
 predictor:
 tensorflow:
 storageUri: "gs://kfserving-samples/models/tensorflow/flowers"

Production	users	include:	 Bloomberg

`

27	

KFServing: Default, Canary and Autoscaler

KFServing – Existing Features
q  Crowd sourced capabilities – Contributions by AWS, Bloomberg, Google, Seldon, IBM, NVidia and others.

q  Support for multiple runtimes pre-integrated (TFServing, Nvdia Triton (GPU optimization), ONNX Runtime, SKLearn,

PyTorch, XGBoost, Custom models.

q  Serverless ML Inference and Autoscaling: Scale to zero (with no incoming traffic) and Request queue based autoscaling

q  Canary and Pinned rollouts: Control traffic percentage and direction, pinned rollouts

q  Pluggable pre-processor/post-processor via Transformer: Gives capabilities to plug in pre-processing/post-processing

implementation, control routing and placement (e.g. pre-processor on CPU, predictor on GPU)

q  Pluggable analysis algorithms: Explainability, Drift Detection, Anomaly Detection, Adversarial Detection (contributed by

Seldon) enabled by Payload Logging (built using CloudEvents standardized eventing protocol)

q  Batch Predictions: Batch prediction support for ML frameworks (TensorFlow, PyTorch, ...)

q  Integration with existing monitoring stack around Knative/Istio ecosystem: Kiali (Service placements, traffic and graphs),

Jaeger (request tracing), Grafana/Prometheus plug-ins for Knative)

q  Multiple clients: kubectl, Python SDK, Kubeflow Pipelines SDK

q  Standardized Data Plane V2 protocol for prediction/explainability et all: Already implemented by Nvidia Triton

q  MMS: Multi-Model-Serving for serving multiple models per custom KFService instance

q  More Data Plane v2 API Compliant Servers: SKLearn, XGBoost, PyTorch…

q  Multi-Model-Graphs and Pipelines: Support chaining multiple models together in a Pipelines

q  PyTorch support via AWS TorchServe

q  gRPC Support for all Model Servers

q  Support for multi-armed-bandits

q  Integration with IBM AIX360 for Explainability, AIF360 for Bias detection and ART for Adversarial detection

KFServing – Upcoming Features

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

ML Lifecycle: Orchestrate Build, Train, Validate and Deploy

Kubeflow Pipelines

§  Containerized implementations of ML Tasks
§  Pre-built components: Just provide params or code snippets

(e.g. training code)
§  Create	your	own	components	from	code	or	libraries	
§  Use	any	runtime,	framework,	data	types	
§  Attach	k8s	objects	-	volumes,	secrets

§  Specification of the sequence of steps
§  Specified via Python DSL
§  Inferred from data dependencies on input/output

§  Input Parameters
§  A “Run” = Pipeline invoked w/ specific parameters
§  Can be cloned with different parameters

§  Schedules	
§  Invoke a single run or create a recurring scheduled pipeline

	

Define Pipeline with Python SDK

@dsl.pipeline(name='Taxi	Cab	Classification	Pipeline	Example’)	
def	taxi_cab_classification(
				output_dir,		
				project,	
				Train_data						=	'gs://bucket/train.csv',	
				Evaluation_data	=	'gs://bucket/eval.csv',	
				Target										=	'tips',		
				Learning_rate			=	0.1,	hidden_layer_size	=	'100,50’,	steps=3000):	
	
				 	tfdv	 	 	=	TfdvOp(train_data,	evaluation_data,	project,	output_dir)	
				 	preprocess	 	=	PreprocessOp(train_data,	evaluation_data,	tfdv.output[“schema”],	project,	output_dir)	
				 	training		=	DnnTrainerOp(preprocess.output,	tfdv.schema,	learning_rate,	hidden_layer_size,	steps,		

target,	output_dir)	
				 	tfma	 	 	=	TfmaOp(training.output,	evaluation_data,	tfdv.schema,	project,	output_dir)	
				 	deploy	 	=	TfServingDeployerOp(training.output)	
	

Compile and Submit Pipeline Run

dsl.compile(taxi_cab_classification,		'tfx.tar.gz')	
run	=	client.run_pipeline(

'tfx_run',	'tfx.tar.gz',	params={'output':	‘gs://dpa22’,	'project':	‘my-project-33’})	

Visualize the state of various components

Pipelines versioning

Pipelines	lets	you	group	and	manage	multiple	versions	of	a	pipeline.	

Artifact Tracking

Artifacts	for	a	run	of	
the	“TFX	Taxi	Trip”	
example	pipeline.	For	
each	artifact,	you	can	
view	details	and	get	
the	artifact	URL—in	
this	case,	for	the	
model.	

Lineage Tracking

For	a	given	run,	the	Pipelines	Lineage	Explorer	lets	you	view	the	history	
and	versions	of	your	models,	data,	and	more.	

Kubeflow Pipeline Architecture

Kubeflow Pipelines can train, deploy and serve

Open	Source	Dojo	 38	

Kubernetes
Ready

ML and AI Platform

Operator Hub - operatorhub.io

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

Watson Productization of Kubeflow Pipelines

Watson AI Pipelines
•  Demonstrate	that	Watson	can	be	used	for	end-end	AI	lifecycledata	prep/model	training/model	risk	

validation/model	deployment/monitoring/updating	models	

•  Demonstrate	that	the	full	lifecycle	can	be	operated	programmatically,	and	have	Tekton	as	a	backend	
instead	of	Argo	

Pipeline: Train the model and monitor with OpenScale

Tekton

q  A	PipelineResource	defines	
an	object	that	is	an	input	
(such	as	a	git	repository)	or	an	
output	(such	as	a	docker	
image)	of	the	pipeline.	

q  A	PipelineRun	defines	an	
execution	of	a	pipeline.	It	
references	the	Pipeline	to	run	
and	the	PipelineResources	to	
use	as	inputs	and	outputs.	

q  A	Pipeline	defines	the	set	
of	Tasks	that	compose	a	
pipeline.	

q  A	Task	defines	a	set	of	build	
Steps	such	as	compiling	code,	
running	tests,	and	building	
and	deploying	images.	

TASK	
	
	STEP	

POD	
	
	

STEP	

TASK	
	
	STEP	 STEP	

POD	
	
	Container	 Container	 Container	 Container	

TEKTON	

q  The	Tekton	Pipelines	project	
provides	Kubernetes-style	
resources	for	declaring	CI/CD-
style	pipelines.	

q  	Tekton	introduces	several	new	
CRDs	including	Task,	Pipeline,	
TaskRun,	and	PipelineRun.		

q  A	PipelineRun	represents	a	
single	running	instance	of	a	
Pipeline	and	is	responsible	for	
creating	a	Pod	for	each	of	its	
Tasks	and	as	many	containers	
within	each	Pod	as	it	has	Steps.	

KFP	API	Server	

Components	Pipelines	

Object	Store	

KFP	UI	

Relational	
DB	

Argo	
Pipeline	
Yaml	
	

Tekton	
Pipeline	
Yaml	
	

 KFP – Tekton Phase One

Pluggable	Components	
	
	

Watson	
Studio	 WML	

Open	
Scale	Spark	 Kubeflow	

Training	 Seldon	 AIF360	 ART	 KATIB	 KFSERVING	

!
!
!
!
!
!
!
…
…!
!
!
!
!
!
!
!

COMPILE

KFP	SDK	

TASK	
	
	STEP	

POD	
	
	

STEP	STEP	

POD	POD	POD	

STEP	

TASK	
	
	STEP	 STEP	

STEP	

POD	
	
	Container	 Container	 Container	 Container	

ARGO	

TEKTON	

 KFP – Tekton Phase Two

Pluggable	Components	
	
	

Watson	
Studio	 WML	

Open	
Scale	Spark	 Kubeflow	

Training	 Seldon	 AIF360	 ART	 KATIB	 KFSERVING	

!
!
!
!
!
!
!
…
…!
!
!
!
!
!
!
!

TASK	
	
	STEP	

POD	
	
	

STEP	STEP	

POD	POD	POD	

STEP	

TASK	
	
	STEP	 STEP	

STEP	

POD	
	
	Container	 Container	 Container	 Container	

ARGO	

TEKTON	

KFP	API	Server	

Components	Pipelines	

Object	Store	

KFP	UI	

Relational	
DB	

Argo	
Pipeline	
Yaml	
	

Tekton	
Pipeline	
Yaml	
	

COMPILE

KFP	SDK	

KFP – Tekton Challenges

46	

Multiple	Moving	parts,	with	different	stakeholders	
	
	Tekton	Community:	Argo	with	version	2.6	much	more	mature	than	Tekton	v0.11	(alpha)	when	the	work	started	around	5	months	ago	
•		Multiple	features	and	capabilities	lacking	in	Tekton	when	we	kick	started	
•		The	team	had	to	default	to	a	spreadsheet	to	start	tracking	and	mapping	KFP	DSL	features,	and	areas	where	Tekton	needed	to	bring	features	and	functions.	
Overall	50	DSL	capabilities	identified	and	corresponding	Tekton	features	started	getting	mapped.	
•		Multiple	features	like	Kubernetes	resources	support	to	create/patch/update/delete	them,	image	pull	secrets,	loops,	conditionals,	support	for	system	params	didn’t	
exist.	Or	existed	partially	
•		Tekton	started	moving	from	alpha	to	beta	as	the	work	progressed,	and	few	features	left	behind	in	alpha	mode	
•		Multiple	issues	opened	on	Tekton.	Required	ramping	up	the	team	of	Tekton	contributors	to	help	drive	these	issues	.	Formed	a	virtual	team	of	IBM	Open	tech	
developers	(Andrea	Frittoli,	Priti	Desai),	IBM	Systems	team	(Vincent	Pli)	DevOps	team	(Simon	Kaegi),	RedHat	(Vincent	Demeester	etc.)	to	drive	Tekton	requirements	
	
Kubeflow	Pipeline	and	TFX	Community:	Open	source	team	needed	to	be	formed	for	the	specific	mission.	And	trained.	Additionally	Google	
needed	to	be	brought	up	on	the	same	page,	and	convinced	the	validity	of	integration.	
•		Multiple	design	reviews	established	with	Google,	and	jointly	agreed	on	a	direction	after	they	were	convinced	why	we	were	doing	it,	and	why	it	makes	sense.	
•		Convincing	to	accelerate	the	IR	(Intermediate	Representation)	strategy	with	TFX,	so	as	to	be	able	to	drive	this	the	right	way	
•		Huge	dependency	in	Kubeflow	Pipeline	code	on	Argo,	including	the	API	backend	and	UI	all	written	with	Argo	dependency	
•		Internal	IBM	team	divided	to	attack	different	areas:	Compiler	(Christian	Kadner),	API	(Tommy	Li),	UI	(Andrew),	Feng	Li	(IBM	Systems,	China)	
•		Inability	of	Kubeflow	Pipeline	backend	to	take	multiple	CRDs,	which	is	the	default	model	Tekton	follows.	So	everything	needed	to	be	bundled	in	one	Pipeline	Spec	
•		Type	check,	workflow	utils,	and	parameter	replacement	are	heavily	tied	with	Argo	API.	In	addition,	the	persistent	agent	is	watching	the	resources	using	the	Argo	API	
type.	
•		MLOps	Sig	in	CD	Foundation	leveraged	to	bring	Kubeflow	Pipelines	and	Tekton	team	together	

 KFP – Tekton: Delivered

Pluggable	Components	
	
	

Watson	
Studio	 WML	

Open	
Scale	Spark	 Kubeflow	

Training	 Seldon	 AIF360	 ART	 KATIB	 KFSERVING	

!
!
!
!
!
!
!
…
…!
!
!
!
!
!
!
!

TASK	
	
	STEP	

POD	
	
	

STEP	

TASK	
	
	STEP	 STEP	

POD	
	
	Container	 Container	 Container	 Container	

TEKTON	

KFP	API	Server	

Components	Pipelines	

Object	Store	

KFP	UI	

Relational	
DB	

Tekton	
Pipeline	
Yaml	
	

COMPILE

KFP	SDK	

Same KFP Experience: DAG, backed by Tekton YAML

48	

Same KFP Exp: Logs, Lineage Tracking and Artifact Tracking

49	

50	

End to end Kubeflow Components : With KFP-Tekton

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

Kubeflow Adoption: External and Internal

Telstra AI Lab - (TAIL) - Configuration 	
•  Kubernetes	–	1.15	

•  Spectrum	Scale	CSI	Driver	

•  MetalLB	for	Load	Balancing		

•  Istio	1.3.1	for	ingress	

•  Kubeflow	–	1.0.1		

•  Jupyter	Notebook	images	are	IBM’s	

multiarchitecture	powerai	images	(
https://hub.docker.com/r/ibmcom/powerai/tags)		

Telstra: Collaborating with IBM to build an Open Source based
OneAnalytics Platform leveraging Kubeflow

THINK	2020	Session:	End-to-End	Data	Science	and	Machine	Learning	for	Telcos:	Telstra's	Use	Case	
https://www.ibm.com/events/think/watch/replay/126561688	
	

Telstra AI Lab - (TAIL) – Future state

•  RedHat	Openshift	–	4.3	

•  GPU	Operator	

•  Kubeflow	Operator	

•  Extending	the	compute		

•  Integrate	feature	stores	and	streaming	

technologies	

•  Integrate	with	CI/CD	tools	(Tekton	

Pipelines)	

	

	

Yara – Working with IBM to build a Data Science Platform for Digital Farming
ML use cases based on Kubeflow

54

THINK	2020	Session:	Enable	Smart	Farming	using	Kubeflow	
https://www.ibm.com/events/think/watch/replay/126494864	

Watson STT: Kubeflow Pipelines running Operations

Watson SpeechToText training Kubeflow pipeline

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

OpenDataHub

'Upstream' is about extracting oil and natural gas from the ground; 'midstream' is about safely moving them thousands of miles;
and 'downstream' is converting these resources into the fuels and finished products we all depend on.

Upstream, Midstream and Downstream

Upstream, Midstream and Downstream
'Upstream' is about extracting oil and natural gas from the ground; 'midstream' is about safely moving them thousands of miles;
and 'downstream' is converting these resources into the fuels and finished products we all depend on.

Data Platform

Operator Hub - operatorhub.io

OpenShift
Ready

OPEN DATA HUB - Ecosystem

61	

Red Hat
OpenShift Container Platform

OPEN DATA HUB
REFERENCE ARCHITECTURE

Storage

Metadata
Management

Data
Analysis

AI
and
ML

Security and
Governance

Monitoring
and

Orchestratio
n

Data in
Motion

Data
Lake In Memory Relational

Databases

Streaming Data Object Storage Data Log Data

Big Data
Processing Streaming Data Exploration

Interactive
Notebooks Model Lifecycle ML

Applications
Business

Applications

Metastore

Red Hat
OpenShift Container Platform

OPEN DATA HUB
REFERENCE IMPLEMENTATION

Storage

Metadata
Management

Data
Analysis

AI
and
ML

Security and
Governance

OpenShift Oauth

OpenShift Single

SignOn
(Keycloak)

RedHat Ceph

Object Gateway

RedHat 3scale

Monitoring
and

Orchestratio
n

Prometheus

Grafana

Kubeflow
Pipelines

Jenkins CI/CD

Data in
Motion

Data Lake
RedHat Ceph

Storage

In Memory
RedHat Data Grid

(Infinispan)

Relational
Databases
PostgreSQL

MySQL

Streaming Data
RedHat AMQ

Streams
Kafka Connect

Object Storage Data
RedHat Ceph S3 API

Log Data
FluentD

Logstash

Big Data
Processing

Spark
SparkSQL

Thrift

Streaming
Kafka Streams
Elastic Search

Data Exploration
Hue

Kibana

Interactive
Notebooks
JupyterHub

Hue

Model Lifecycle
Kubeflow
Seldon
MLFlow

ML
Applications
OpenDataHub

AI Library

Business
Applications

Superset

Metastore
Hive

Prepared
and

Analyzed
Data

Trained
Model

Deployed
Model

Prepared
Data

Untrained
Model

OpenDataHub	and	Kubeflow:	Relationship	

Initial Goals: OpenDataHub and Kubeflow

Initial Goals:
•  Kubeflow has a great traction, Make it available for OpenShift users

Done in https://github.com/opendatahub-io/manifests

•  Offer ODH users components installed by KF

•  And offer components from ODH (Kafka, Apache SuperSet, Hive…) to KF community

•  Decide if we can leverage KF project and community as upstream for ODH

•  Think Kubernetes -> OpenShift

•  Frees up ODH maintainers time to make sure KF keeps running well on OpenShift

Kubeflow Operator – Contributed by IBM to Kubeflow community
to help enable OpenDataHub

•  https://operatorhub.io/operator/kubeflow	
	

•  Deploy,	manage	and	monitor	Kubeflow	
	

•  On	various	environments	
q  IBM	Cloud	
q  GCP	
q  AWS	
q  Azure	
q  OpenShift	
q  Other	K8S	

Outcome: Kubeflow an Upstream for OpenDataHub

●  A	version	of	the	Operator	based	on	Kubeflow	
Architecture	released:
https://developers.redhat.com/blog/2020/05/07/open-
data-hub-0-6-brings-component-updates-and-kubeflow-
architecture/?sc_cid=7013a000002DTqEAAW	

●  Most	of	the	components	converted:		
https://github.com/opendatahub-io/odh-manifests		
	

●  Still	a	separate	deployment	–	needs	to	do	both	ODH	
and	Kubeflow	in	one	go.	

Future
•  KF	1.0	on	OpenShift	

•  Disconnected	deployment	

•  Open	Data	Hub	CI/CD	

•  Kubeflow	on	OpenShift	CI	

•  UBI	based	ODH	&	KF	

•  Multitenancy	model	

•  Mixing	KF	&	ODH	
		

OPEN DATA HUB 0.6.x

Open Data Hub in OpenShift

69

Apache Superset

70 Think 2020 / DOC ID / Month XX, 2020 / © 2020 IBM
Corporation

Spark with Open Data Hub

71	

•  Open Data Hub will also deploy

the Spark Operator to manage

Spark as an application.

•  Two versions of Spark – Spark in

dedicated mode and Spark on

K8s

•  Currently moving towards Spark

on K8s Operator from Google for

serverless Spark. IBM

Hummingbird team investigating

this

Airflow integration with Open Data Hub

72	

•  Open Data Hub will also deploy the Airflow Operator to manage Airflow as an application.

•  Using the Airflow Operator originally developed in the GoogleCloudPlatform repository and later donated to

Apache.

•  The Operator creates a controller-manager pod which will be created as a part of the Open Data Hub

deployment.

•  Users can then install the Airflow components they need from the available options (eg: CeleryExecutor or

KubernetesExecutor, Postgres deployment or MySQL deployment etc.)

Apache Hive with OpenDataHub
•  Hive	was	one	of	the	first	abstraction	engines	to	be	built	

on	top	of	MapReduce.	

•  Started	at	Facebook	to	enable	data	analysts	to	analyse	
data	in	Hadoop	by	using	familiar	SQL	syntax	without	
having	to	learn	how	to	write	MapReduce.	

•  Hive	an	essential	tool	in	the	Hadoop	ecosystem	that	
provides	an	SQL	dialect	for	querying	data	stored	in	
HDFS,	other	file	systems	that	integrate	with	Hadoop	
such	as	MapR-FS	and	Amazon’s	S3	and	databases	like	
HBase(the	Hadoop	database)	and	Cassandra.	

•  Hive	is	a	Hadoop	based	system	for	querying	and	
analysing	large	volumes	of	structured	data	which	is	
stored	on	HDFS.	

•  Hive	is	a	query	engine	built	to	work	on	top	of	Hadoop	
that	can	compile	queries	into	MapReduce	jobs	and	run	
them	on	the	cluster.	

	
	
	

Data Platform

Operator Hub - operatorhub.io

OpenShift
Ready

Kubernetes
Ready

ML and AI Platform

Operator Hub - operatorhub.io

Kubernetes
Ready

Upstream Kubeflow Midstream OpenDataHub

OpenShift
Ready

Operator Hub - operatorhub.io

Kubeflow

 OpenDataHub

Open Source End To End
Data and AI Platform

RedHat MarketPlace https://marketplace.redhat.com/en-us

 Coming Next: Kubeflow Dojo

https://github.com/kubeflow	
	
https://github.com/opendatahub-io	
	

			
https://github.com/IBM/

KubeflowDojo	
	

Kubeflow Dojo: Prerequisites

•  Knowledge of Kubernetes, watch the dojo for Kubernetes project with the IBM internal link or external link

•  Access to a Kubernetes cluster, either minikube or remote hosted

•  Source code control and development with git and github, watch the presentation with the
IBM internal link or external link for git and external link for pull requests

•  Get familiar with golang language, watch the introduction dojo with the IBM internal link or external link

•  (optional) Knowledge of Istio and knative

•  If you have more time,
o  Read Kubeflow document to learn more about Kubeflow project
o  Browse through Kubeflow community github

Kubeflow Dojo: Tips for success

•  Access to a Kubernetes cluster

•  minimal spec: 8vcpu, 16gb ram and at least 50gb disk for docker registry

•  On IBM Kubernetes Service, provision the cluster with machine type b2c.4x16 and 2 worker
nodes

•  Follow Kubeflow document to have your cluster prepared

•  On IKS cluster, follow this link to install the IBM Cloud CLI and helm followed by setting up
IBM Cloud Block Storage as the default storage class

©	2019	IBM	Corporation	

Kubef low	Dojo : 	 L ive 	
Dates:	15th	and	16th	July	
	
	

Kubef low Do jo : V i r tua l
github.com/ibm/KubeflowDojo

80

Reach	Out!	
	
Animesh	Singh	
singhan@us.ibm.com	
twitter.com/AnimeshSingh	
github.com/AnimeshSingh	
	
	
	
		

https://ec.yourlearning.ibm.com/w3/event/10082348	

