
IBM Kubeflow - Distributed Training and HPO

Tommy Li

Kubeflow

Distributed Model Training and HPO (TFJob, PyTorch Job, MPI Job, Katib, ...)

Addresses One of the key goals for model builder persona:

Distributed Model Training and Hyper parameter optimization for Tensorflow, PyTorch, XGBoost, MXNet, etc.

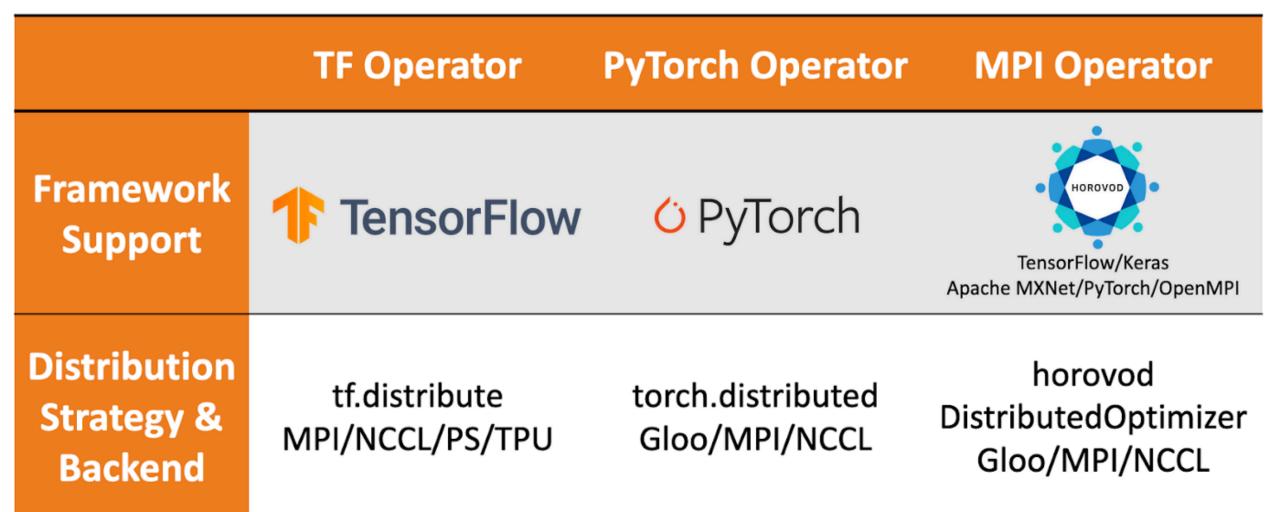
<u>Common problems</u> in HP optimization

- Overfitting
- Wrong metrics
- Too few hyperparameters

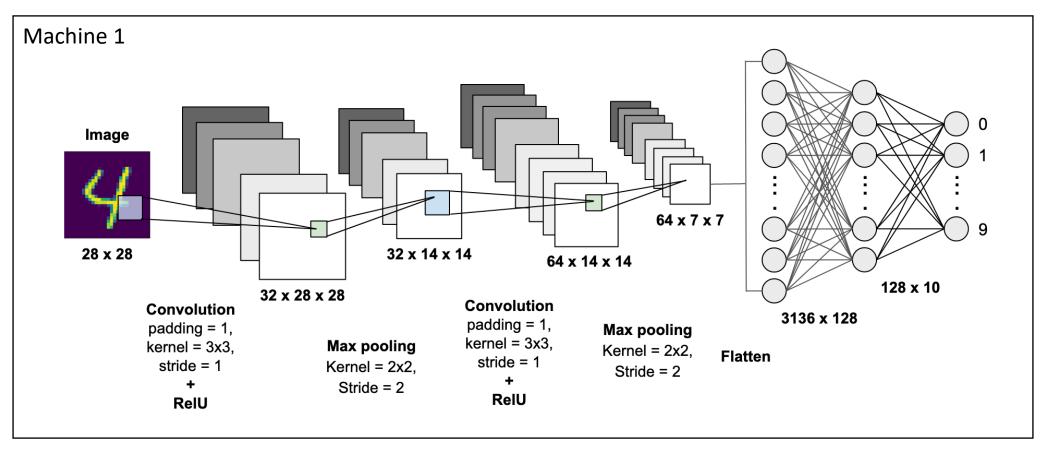
Katib: a fully open source, Kubernetes-native hyperparameter tuning service

- Inspired by Google Vizier
- Framework agnostic
- Extensible algorithms
- Simple integration with other Kubeflow components

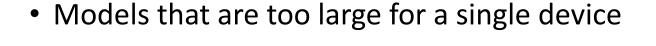
Kubeflow also supports distributed MPI based training using Horovod


HOROVOD

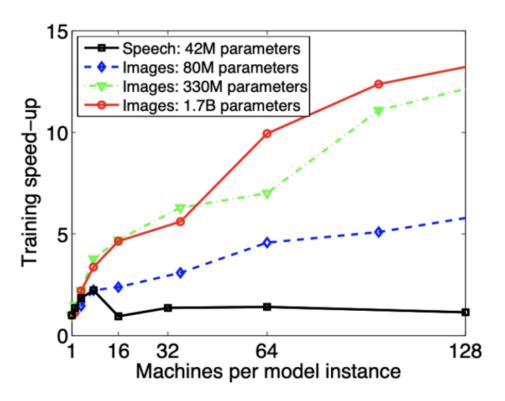
IBM Distributed Training Operators



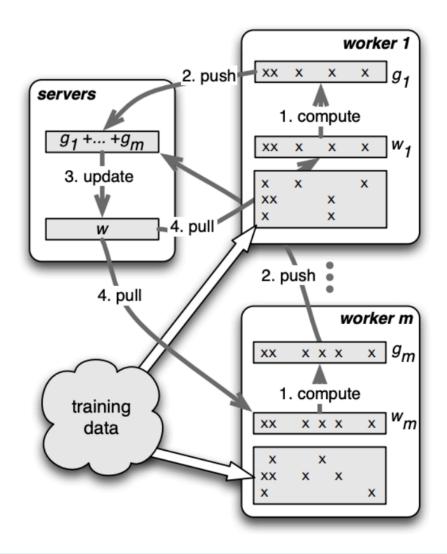
IBM Traditional Model Training


Source: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9

Kubeflow

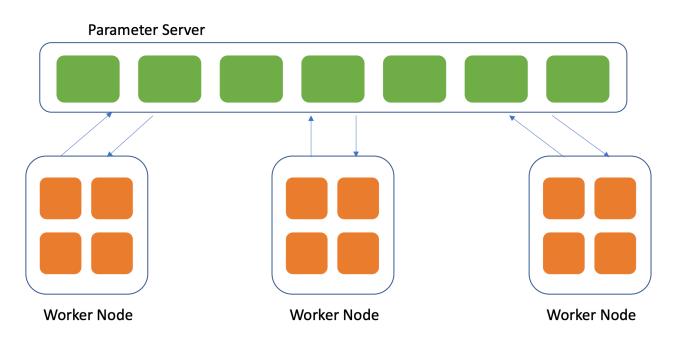

Need for Distributed Training

227 CONV Overlapping Overlapping CONV CONV Max POOL Max POOL 11x11, 5x5,pad=2 3x3,pad=1 stride=4, 3x3. 3x3. 256 kernels 384 kernels stride=2 stride=2 96 kernels (27+2*2-5)/1 (27-3)/2 +1 (13+2*1-3)/1 (55-3)/2 +1 = 27 (227-11)/4 +1 = 13 +1 = 27+1 = 1355 55 Overlapping CONV CONV Max POOL 3x3,pad=1 3x3,pad=1 3x3, 384 kernels 256 kernels stride=2 (13+2*1-3)/ FC (13+2*1-3)/1 FC (13-3)/2 +1 = 13+1 = 13 = 6 9216 1000 Softmax 4096 4096

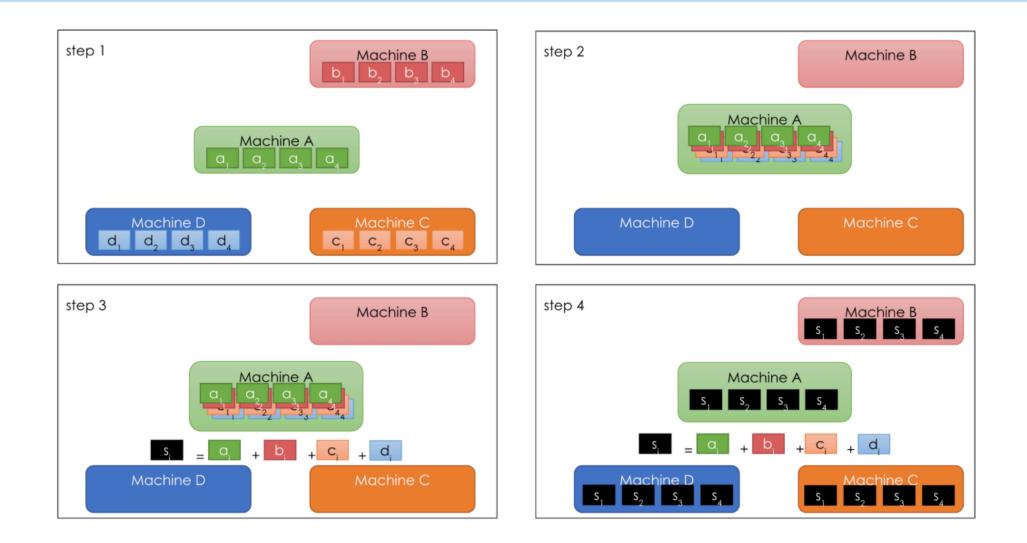

Improved parallelization

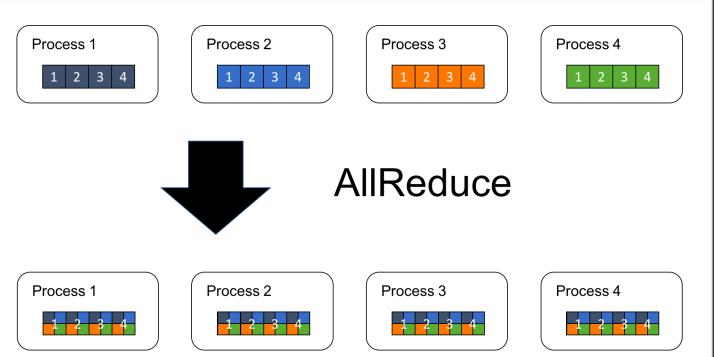
IBM

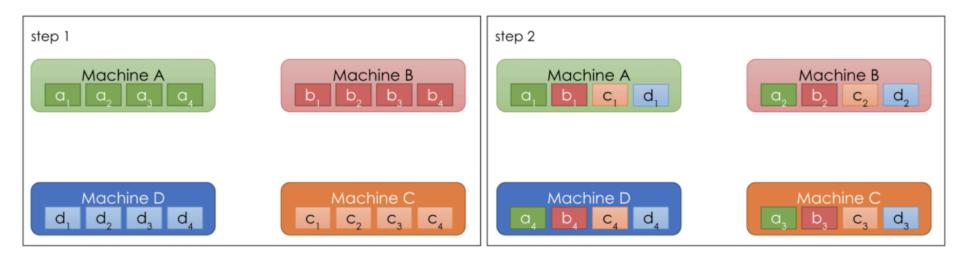
Distributed Model Training

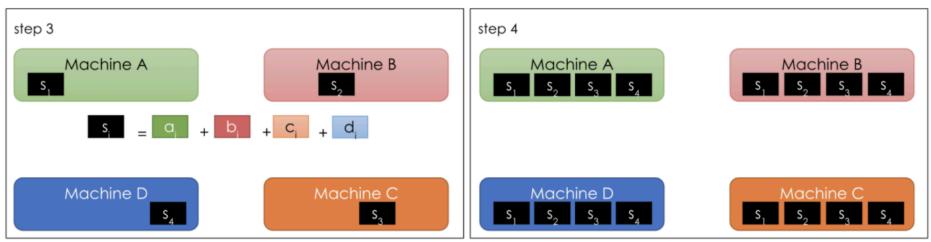


Parameter Servers


- Most simple form of distributed training
- One centralized parameter server does the aggregation job of collecting and redistributing results of each worker node



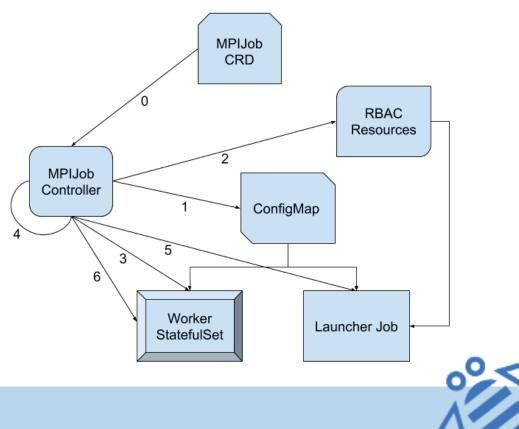

- Most parallelized form of distributed training
- There are many different styles of AllReduce with each having different benefits and costs





Advantages of allreduce-style training

- Each worker stores a complete set of model parameters, so adding more workers is easy
- Failures among workers can be recovered easily by just restarting the failed worker and loading the model from an existing worker
- Models can be updated more efficiently by leveraging network structure
- Scaling up and down workers only requires reconstructing the underlying allreduce communicator and re-assigning the ranks among the workers



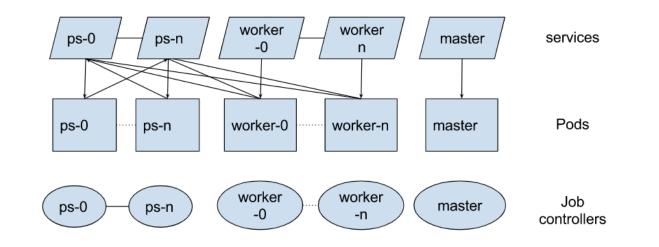
- The MPI Operator allows for running allreduce-style distributed training on Kubernetes
- Provides common Custom Resource Definition (CRD) for defining training jobs
- Unlike other operators, such as the TF Operator and the Pytorch Operator, the MPI Operator is decoupled from one machine learning framework. This allows the MPI Operator to work with many machine learning frameworks such as Tensorflow, Pytorch, and Apache MXNet

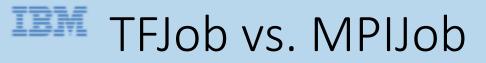
- When a new MPIJob is created the MPIJob Controller goes through a set of steps
- 1. Create a ConfigMap
- 2. Create the RBAC resources (Role, Service Account, Role Binding) to allow remote execution (pods/exec)
- 3. Create the worker StatefulSet
- 4. Wait for worker pods to be ready
- 5. Create the Job which is run under the Service Account (from Step 2)

IBM

Example API Spec

	•
1	apiVersion: kubeflow.org/v1alpha2
2	kind: MPIJob
3	metadata:
4	name: tensorflow-benchmarks
5	spec:
6	slotsPerWorker: 1
7	cleanPodPolicy: Running
8	mpiReplicaSpecs:
9	Launcher:
10	replicas: 1
11	template:
12	spec:
13	containers:
14	- image: mpioperator/tensorflow-benchmarks:latest
15	name: tensorflow-benchmarks
16	command:
17	- mpirun
18	- python
19	- scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py
20	model=resnet101
21	batch_size=64
22	variable_update=horovod
23	Worker:
24	replicas: 2
25	template:
26	spec:
27	containers:
28	 image: mpioperator/tensorflow-benchmarks:latest
29	name: tensorflow-benchmarks
30	resources:
31	limits:
32	nvidia.com/gpu: 1




- TFJobs are Kubernetes custom resource definitions for running distributed and non-distributed Tensorflow jobs on Kubernetes
- The tf-operator is the Kubeflow implementation of TFJobs
- A TFJob is a collection of TfReplicas where each TfReplica corresponds to a set of Tensorflow processes performing a role in the job

- A distributed Tensorflow Job is collection of the following processes
 - Chief The chief is responsible for orchestrating training and performing tasks like checkpointing the model
 - Ps The ps are parameters servers; the servers provide a distributed data store for the model parameters to access
 - Worker The workers do the actual work of training the model. In some cases, worker 0 might also act as the chief
 - Evaluator The evaluators can be used to compute evaluation metrics as the model is trained

apiVersion: "kubeflow.org/v1beta1"

kind: TFJob

metadata:

name: distributed-training

spec:

tfReplicaSpecs:

Worker:

replicas: 4

template:

spec:

containers:

- name: tensorflow

image: distributed_training_tf:latest

resources:

limits: nvidia.com/gpu: 4

command: "python tf_benchmarks.py"

apiVersion: "kubeflow.org/v1alpha2" kind: MPIJob metadata: name: distributed-training spec: mpiReplicaSpecs: Worker: replicas: 4 template: spec: containers: - name: tensorflow image: distributed_training_hovorod:latest resources: limits: nvidia.com/gpu: 4 command: "mpirun python hovorod_benchmarks.py"

M Pytorch Operator

- Similar to TFJobs and MPIJobs, PytorchJobs are Kubernetes custom resource definitions for running distributed and non-distributed PytorchJobs on Kubernetes
- The pytorch-operator is the Kubeflow implementation of PytorchJobs
- There are a number of metrics that can be monitored for each component container of the pytorch-operator by using Prometheus Montoring

Pytorch Operator monitoring

- Prometheus monitoring for pytorch operator makes the many available metrics easy to monitor
- There are metrics for each component container for the pytorch operator, such as CPU usage, GPU usage, Keep-Alive check, and more
- There are also metrics for reporting PytorchJob information such as job creation, successful completions, failed jobs, etc.

Demo

Introduction to Katib

Kubeflow-Katib

- Motivation: Automated tuning machine learning model's hyperparameters and neural architecture search.
- Major components:
 - katib-db-manager: GRPC API server of Katib which is the DB Interface.
 - katib-mysql: Data storage backend of Katib using mysql.
 - katib-ui: User interface of Katib.
 - katib-controller: Controller for Katib CRDs in Kubernetes.
- Katib: Kubernetes Native System for Hyperparameter Turning and Neural Architecture Search.
- Github Repository: <u>https://github.com/kubeflow/katib</u>

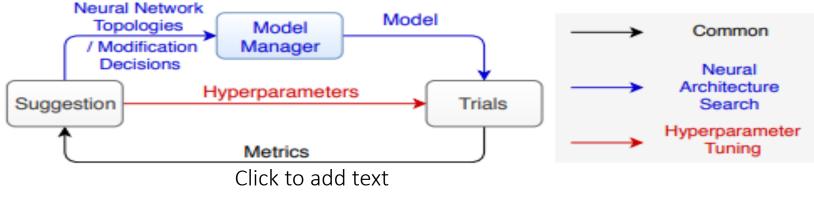
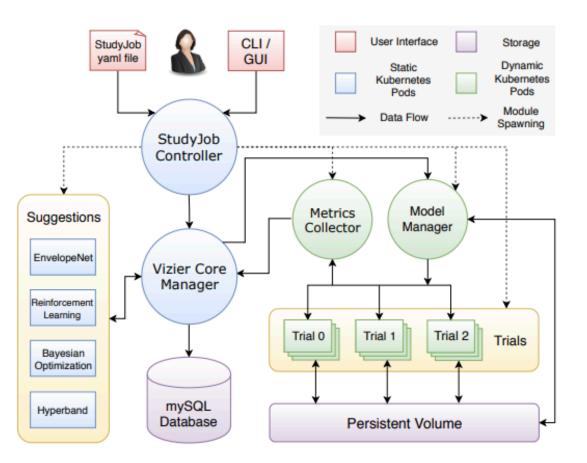


Figure 1: Summary of AutoML workflows


Katib is a scalable Kubernetes-native general AutoML platform. Katib integrate hyper-parameter turning and NAS into one flexible frame-work.

Design of Katib

Note: StudyJob is now called Experiment

Accessing the katib UI

😑 🔅 Kubeflow 🛞 Select namespace 🔻		
≡ Katib		
	Welcome to Katib Choose type of experiment	
	Hyperparameter Tuning Neural Architecture Search	
	For usage instructions, see the Kubeflow docs To contribute to Katib, visit GitHub	

First Example of Katib

 Namespace Common Parameters ParallelTrialCount MaxTrialCount MaxFailedTrialCount 	random-experiment kubeflow 3 12	
 Namespace Common Parameters ParallelTrialCount MaxTrialCount MaxFailedTrialCount 	kubeflow 3 12	
 ParallelTrialCount MaxTrialCount MaxFailedTrialCount 	3 12	
 MaxTrialCount MaxFailedTrialCount 	12	
Э MaxFailedTrialCount	12	
⑦ MaxFailedTrialCount		
	3	
Objective		
🕐 Туре	Objective Type maximize •	
⑦ Goal	0.99	
ObjectiveMetricName	Validation-accuracy	
③ AdditionalMetricNames	accuracy	+
Algorithm		
ADD ALGORITHM SETTING		
ADD ALGORITHM SETTING		

IBM Deploy the random-example

•	Click	k the	Dep	loy
---	-------	-------	-----	-----

V 🍞 Select r	namespace 👻						
⑦ Goal		0.99					
			Validation-accuracy				
ObjectiveMe	etricName	Validation-accuracy					
⑦ AdditionalM	letricNames	accuracy			ī 🕂		
Algorithm					•		
ADD ALGORI1	THM SETTING						
⑦ Algorithm Na	me	random	Algorithm Name				
-							
Parameters							
ADD PARAME	TER						
Name	Parameter Type			Min 0.01			
lr	double	 FeasibleSpace 	🔘 List	Max			
				0.03			
	- Parameter Type			Min			
Name num-layers	int	- FeasibleSpace	🔘 List	2 Max	İ		
				5			
				sgd	_		
	Parameter Type						
Name optimizer	categorical	 FeasibleSpace 	List	adam	T (=) T		
				ftrl	_ i		
Trial Spec							
⑦ Namespace		kubeflow					
O Hamespace							
 TrialSpec 		Trial Spec					

Check experiment status

• Click the Katib tab, then choose Monitor under HP on the left side

≡	🌾 Kubeflow 🕥	Select namespace 👻	
乖	HP ^		
÷	Submit		
C	Monitor	iment Monitor	
Q	NAS ^	ace	
\$	Trial Manifests	Name Created Created Running Restarting Succeeded Failed	
0	About	UPDATE	
		mnist-demo-a anonymous	ĩ
		mnist-demo-b anonymous	•
		mnist-demo-c anonymous	Î
		mnist-demo-f anonymous	Î
		mnist-demo-g anonymous	i
		mnist-demo-h anonymous	i i
		mnist-demo6 anonymous	Ξ.
		random-experiment kubeflow	Î

trial

😑 🔅 Kubeflow 🚳 Select namespace 🗸							
≡ Katib							
ВАСК							
		Experiment Na	ame: random-ex	periment			
		Experiment	Namespace: ku	beflow			
		V	IEW EXPERIMENT				
	Validation-accuracy 1.000 1.000	accuracy 1.000 1.000	Ir 0.028	num-layers 4 4	optimizer		
	0.800 -	0.800 -	0.026 -				
	0.600 -	0.600 -	0.024 -	_			
	0.200 -	0.200 -	0.022 -				
	0.000	0:000	0.020 -	3			
	-0.200 -	-0.200 -	0.018 -				
	-0.400 -	-0.400 -	0.016 -				
	-0.800 -	-0.800 -	0.014 -				
	-1.000	-1.000 -1.000	0.012	22	adam		
trialName	Status	Validation-accuracy	accuracy	Ir	num-layers	optimizer	
random-experiment-jcrdnbp	6 Succeeded			0.019509410857094178	3	adam	
random-experiment-ns7qjdg	37 Succeeded			0.027633729004323385	4	sgd	
random-experiment-qjk7qjb	m Succeeded			0.011510263451294795	2	sgd	

Check status from command line

• At your K8S cluster command line:

(base) Qianyangs-MBP:kevin-kubeflow-demo-0521 qianyangyu\$ kubectl get experiment -n kubeflow NAME STATUS AGE random-experiment Running 132m (base) Qianyangs-MBP:kevin-kubeflow-demo-0521 qianyangyu\$

Check Experiment's CR

• Get the experiment CR from command line

kevin-kubeflow-demo-0521 - - bash - 113×34 (base) Qianyangs-MBP:kevin-kubeflow-demo-0521 gianyangyu\$ kubectl get experiment random-experiment -n kubeflow -o yaml apiVersion: kubeflow.org/v1alpha3 kind: Experiment metadata: creationTimestamp: "2020-06-25T22:22:10Z" finalizers: - update-prometheus-metrics generation: 1 name: random-experiment namespace: kubeflow resourceVersion: "10842626" selfLink: /apis/kubeflow.org/v1alpha3/namespaces/kubeflow/experiments/random-experiment uid: f3868bd1-1ccb-4de4-beb7-852d6c67d8f8 spec: algorithm: algorithmName: random algorithmSettings: [] maxFailedTrialCount: 3 maxTrialCount: 12 objective: additionalMetricNames: accuracy goal: 0.99 objectiveMetricName: Validation-accuracy type: maximize parallelTrialCount: 3 parameters: - feasibleSpace: max: "0.03" min: "0.01" name: --lr parameterType: double - feasibleSpace:

algorithm: algorithmName: random algorithmSettings: [] maxFailedTrialCount: 3 maxTrialCount: 12 objective: additionalMetricNames: accuracy goal: 0.99 objectiveMetricName: Validation-accuracy type: maximize parallelTrialCount: 3 parameters: – feasibleSpace: max: "0.03" min: "0.01" name: --lr parameterType: double – feasibleSpace: max: "5" min: "2" name: --num-layers parameterType: int feasibleSpace: list: – sad – adam - ftrl name: --optimizer parameterType: categorical trialTemplate: goTemplate: templateSpec: configMapName: trial-template configMapNamespace: kubeflow templatePath: defaultTrialTemplate.yaml

- Algorithm: Katib supports random, grid, hyperband, bayesian optimization and tpe algorithms.
- MaxFailedTrialCount: specify the max the tuning with failed status
- MaxTrialCount: specify the limit for the hyper-parameters sets can be generated.
- Objective: Set objetiveMetricName and additionalMetricNames.
- ParalleTrialCount: how many set of hyper-parameter to be tested in parallel.

Fields in Experiment's spec

spec:	
algorithm:	
algorithmName: random	
algorithmSettings: []	
maxFailedTrialCount: 3	
maxTrialCount: 12	
objective:	
additionalMetricNames:	
- accuracy	
goal: 0.99	
objectiveMetricName: Validation-accuracy	
type: maximize	
parallelTrialCount: 3	
parameters:	
- feasibleSpace:	
max: "0.03"	
min: "0.01"	
name:lr	
parameterType: double	
- feasibleSpace:	
max: "5"	
min: "2"	
name:num-layers	
parameterType: int	
- feasibleSpace:	
list:	
- sgd	
- adam	
- ftrl	
name:optimizer	
parameterType: categorical	
trialTemplate:	
goTemplate:	
<pre>templateSpec: configMapName: trial-template</pre>	
configMapNamespace: kubeflow	
templatePath: <u>defaultTrialTemplate.yaml</u>	

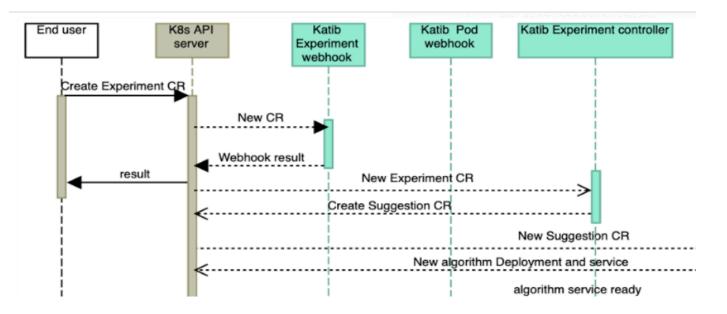
- TrialTemplate: Your model should be packaged by image, model's hyper-parameter must be configurable by argument or environment variable.
- Parameter: defines the range of the hyper-parameters you want to tune your model.
- MetricsCollectorSpec: The metric collectors for stdout, file or tfevent. Metric collecting will run as a sidecar if enabled.

• Katib internally generate a Trial CR, it is for internal logic control.

(base) Qianyangs-MBP:kevin-kubeflow-demo-0521 qianyangyu\$ kubectl get trial -n kubeflow NAME TYPE STATUS AGE random-experiment-jcrdnbp6 Succeeded False 138m random-experiment-ns7gjdg7 Succeeded False 138m random-experiment-gjk7gjbm Succeeded False 138m (base) Qianyangs-MBP:kevin-kubeflow-demo-0521 qianyangyu\$ kubectl get trial -n kubeflow -o yaml apiVersion: v1 items: - apiVersion: kubeflow.org/v1alpha3 kind: Trial metadata: creationTimestamp: "2020-06-25T22:22:47Z" finalizers: - clean-metrics-in-db generation: 1 labels: experiment: random-experiment name: random-experiment-jcrdnbp6 namespace: kubeflow ownerReferences: - apiVersion: kubeflow.org/v1alpha3 blockOwnerDeletion: true controller: true kind: Experiment name: random-experiment uid: f3868bd1-1ccb-4de4-beb7-852d6c67d8f8 resourceVersion: "10842624" selfLink: /apis/kubeflow.org/v1alpha3/namespaces/kubeflow/trials/random-experiment-jcrdnbp6 uid: 7837e2c9-8b57-47d5-b396-1d94256c81f4 spec: metricsCollector: {} objective: additionalMetricNames: - accuracy goal: 0.99 objectiveMetricName: Validation-accuracy type: maximize parameterAssignments:

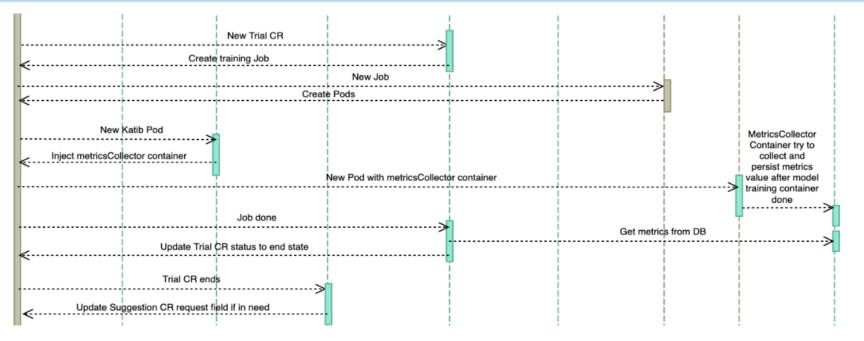
• Katib internally create a suggestion CR for each experiment CR. It includes hyper-parameter algorithm name and how many sets of hyper-parameter katib is asking to be generated by requests field.

kubectl get suggestion -n kubeflow STATUS REQUESTED ASSIGNED AGE TYPE random-experiment Running True 3 3 13h (veny) (base) Qianyangs-MBP:kevin-kubeflow-iks-2032 gianyangyu\$ kubectl get suggestion random-experiment -n kubeflow -o apiVersion: kubeflow.org/v1alpha3 kind: Suggestion metadata: creationTimestamp: "2020-04-14T04:30:08Z" generation: 1 name: random-experiment namespace: kubeflow ownerReferences: apiVersion: kubeflow.org/v1alpha3 blockOwnerDeletion: true controller: true kind: Experiment name: random-experiment uid: b925fd88-45fa-48d8-813b-5ad9e88c98b5 resourceVersion: "37729974" selfLink: /apis/kubeflow.org/v1alpha3/namespaces/kubeflow/suggestions/random-experiment uid: 528f2b9e-56ae-4c03-8fc5-fe76a6dacdfb spec: algorithmName: random requests: 3 status: conditions: - lastTransitionTime: "2020-04-14T04:30:08Z" lastUpdateTime: "2020-04-14T04:30:08Z" message: Suggestion is created reason: SuggestionCreated status: "True" type: Created - lastTransitionTime: "2020-04-14T04:30:28Z" lastUpdateTime: "2020-04-14T04:30:28Z" message: Deployment is ready reason: DeploymentReady status: "True" type: DeploymentReady - lastTransitionTime: "2020-04-14T04:30:49Z" lastUpdateTime: "2020-04-14T04:30:49Z" message: Suggestion is running reason: SuggestionRunning status: "True" type: Running



- name: random-experiment-pg8dtx5h parameterAssignments:
 - name: --lr
 - value: "0.0269665166782524"
 - name: --num-layers
 value: "2"
 - name: --optimizer value: sgd
- name: random-experiment-tnfb6ztg parameterAssignments:
 - name: --lr value: "0.014498585230091017"
 - name: --num-layers
 value: "3"
 - name: --optimizer
 value: ftrl
- name: random-experiment-ppriwngk parameterAssignments:
 - name: --lr
 value: "0.011259413563300284"
 - name: --num-layers
 value: "2"
 - name: --optimizer

value: sgd

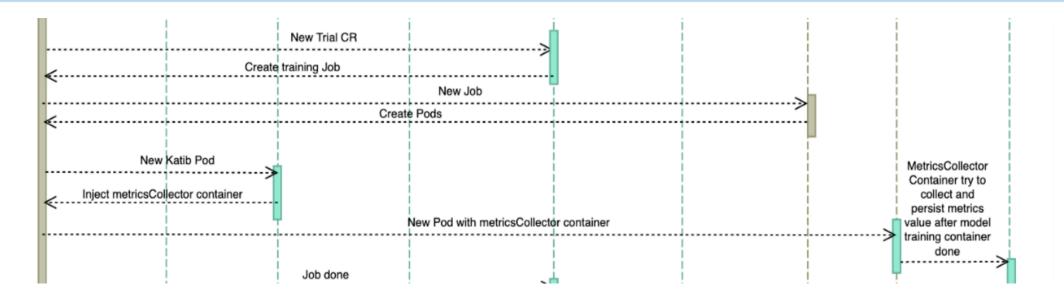


Katib controller flow(step1 to 3)

- 1. A experiment CR is submitted to K8S API server; Katib experiment mutating and validating webhook will be called to set default value for the Experiment CR and validate the CR.
- 2. Experiment controller create a suggestion CR
- 3. Suggestion controller create the algorithm deployment and service based on the new suggestion CR

Katib controller flow(Step4 to 6)

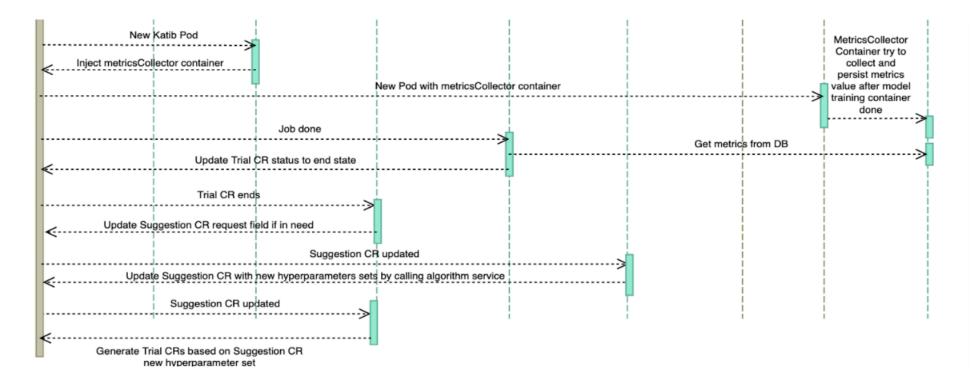
4. Suggestion controller verifies the algorithm service is ready;


generates spec.request - len(status.suggestions) and append them into status.suggestions

5. Experiment controller detects the suggestion CR has been updated, generate each Trial for each new hyperparameters set

6. Trial controller generates job based on runSpec manifest with the new hyper-parameter set.

Katib controller flow(Step7 to 9)



7. Related job controller (k8s batch job, kubeflow pytorchJob or Kubeflow TFJob) generated Pods.

- 8. Katib Pod mutating webhook to inject metrics collector sidecar container to the candidate Pod.
- 9. Metrics collector container tries to collect metrics from it and persists them into Katib DB backend.

Katib controller flow(Step10 to 11)

10. When the ML model job ends, Trial controller will update corresponding Trial CR's status.

11. When a Trial CR goes to end, Experiment controller will increase request field of corresponding suggestion CR, then go to step 4 again. If it ends, it will record the best set of hyper-parameters in .status.currentOptimalTrial field.

Demo

Further Resources

- Distributed Training:
 - <u>https://github.com/kubeflow/tf-operator</u>
 - <u>https://github.com/kubeflow/pytorch-operator</u>
 - <u>https://github.com/kubeflow/mpi-operator</u>
- Katib
 - <u>https://github.com/kubeflow/katib</u>

