
Jupyter Notebooks

Workflow Building

Pipelines

Tools

Serving

Metadata
Kale

Fairing

TFX

KF Pipelines

HP Tuning

Tensorboard

KFServing

Seldon Core

TFServing, + Training Operators
Pytorch

XGBoost, +

Tensorflow

Prometheus

Kubeflow - Distributed Training and HPO  
Tommy Li

MPI

MXNet



Distributed Model Training and HPO  (TFJob, PyTorch Job, MPI 
Job, Katib, …)

• Addresses One of the key goals for model builder persona: 

Distributed Model Training and Hyper parameter 
optimization for Tensorflow, PyTorch, XGBoost, MXNet, etc.

Common problems in HP optimization
• Overfitting
• Wrong metrics
• Too few hyperparameters

Katib: a fully open source, Kubernetes-native hyperparameter 
tuning service

• Inspired by Google Vizier
• Framework agnostic
• Extensible algorithms
• Simple integration with other Kubeflow components

Kubeflow also supports distributed MPI based training using 
Horovod

https://sigopt.com/blog/common-problems-in-hyperparameter-optimization/


Distributed Training Operators 
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Traditional Model Training 

Machine 1

Source: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9

https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9


Need for Distributed Training

• Models that are too large for a single device • Improved parallelization

Source: http://www.juyang.co/distributed-model-training-ii-parameter-server-and-allreduce/

http://www.juyang.co/distributed-model-training-ii-parameter-server-and-allreduce/


Distributed Model Training 



Parameter Servers
• Most simple form of distributed 

training
• One centralized parameter server 

does the aggregation job of collecting
and redistributing results of each 
worker node



Parameter Servers



AllReduce
• Most parallelized form of distributed

training
• There are many different styles

of AllReduce with each having
different benefits and costs



AllReduce



Advantages of allreduce-style training
• Each worker stores a complete set of model parameters, so adding more workers is easy
• Failures among workers can be recovered easily by just restarting the failed worker and 

loading the model from an existing worker
• Models can be updated more efficiently by leveraging network structure
• Scaling up and down workers only requires reconstructing the underlying allreduce

communicator and re-assigning the ranks among the workers



Distributed Training in Kubeflow

Kubernetes Kubeflow

tf-operator

pytorch-operator

mpi-operator



MPI Operator
• The MPI Operator allows for running allreduce-style distributed training on Kubernetes

• Provides common Custom Resource Definition (CRD) for defining training jobs
• Unlike other operators, such as the TF Operator and the Pytorch Operator, the MPI 

Operator is decoupled from one machine learning framework. This allows the MPI 
Operator to work with many machine learning frameworks such as Tensorflow, Pytorch, 
and Apache MXNet



Design
• When a new MPIJob is created the MPIJob Controller goes through a set of steps
• 1. Create a ConfigMap
• 2. Create the RBAC resources (Role, Service Account, Role Binding) to allow remote 

execution (pods/exec)
• 3. Create the worker StatefulSet
• 4. Wait for worker pods to be ready
• 5. Create the Job which is run under the Service

Account (from Step 2)



Example API Spec



TF Operator
• TFJobs are Kubernetes custom resource definitions for running distributed and 

non-distributed Tensorflow jobs on Kubernetes
• The tf-operator is the Kubeflow implementation of TFJobs
• A TFJob is a collection of TfReplicas where each TfReplica corresponds to a set of 

Tensorflow processes performing a role in the job



Design
• A distributed Tensorflow Job is collection of the following processes

• Chief – The chief is responsible for orchestrating training and performing tasks like checkpointing the 
model

• Ps – The ps are parameters servers; the servers provide a distributed data store for the model 
parameters to access

• Worker – The workers do the actual work of training the model. In some cases, worker 0 might also act 
as the chief

• Evaluator - The evaluators can be used to compute evaluation metrics as the model is trained



TFJob vs. MPIJob



Pytorch Operator
• Similar to TFJobs and MPIJobs, PytorchJobs are Kubernetes custom resource definitions 

for running distributed and non-distributed PytorchJobs on Kubernetes
• The pytorch-operator is the Kubeflow implementation of PytorchJobs
• There are a number of metrics that can be monitored for each component container of 

the pytorch-operator by using Prometheus Montoring



Pytorch Operator monitoring
• Prometheus monitoring for pytorch operator makes the many available 

metrics easy to monitor 
• There are metrics for each component container for the pytorch operator, 

such as CPU usage, GPU usage, Keep-Alive check, and more
• There are also metrics for reporting PytorchJob information such as job 

creation, successful completions, failed jobs, etc.



Demo

Demo



Katib

Introduction to Katib



Kubeflow-Katib
• Motivation: Automated tuning machine learning model’s hyperparameters and neural 

architecture search.

• Major components:
• katib-db-manager: GRPC API server of Katib which is the DB Interface.
• katib-mysql: Data storage backend of Katib using mysql.
• katib-ui: User interface of Katib.
• katib-controller: Controller for Katib CRDs in Kubernetes.

• Katib: Kubernetes Native System for Hyperparameter Turning and Neural Architecture Search.

• Github Repository: https://github.com/kubeflow/katib

https://github.com/kubeflow/katib


AutoML workflows

Click to add text

Katib is a scalable Kubernetes-native general 
AutoML platform.
Katib integrate hyper-parameter turning and 
NAS into one flexible frame-work.



Design of Katib

Note: StudyJob is now called Experiment



Accessing the katib UI
• Under the Kubeflow web UI, click the Katib on the left side bar.



First Example of Katib
• We are using random-example from Hyper-parameter Turning



Deploy the random-example
• Click the Deploy



Check experiment status
• Click the Katib tab, then choose Monitor under HP on the left side



View Experiment
• Click the experiment name, it will show the experiment also the status of 

trial



Check status from command line

• At your K8S cluster command line:



Check Experiment's CR
• Get the experiment CR from command line



Conti. Experiment CR

• Algorithm: Katib supports random, grid, hyperband, bayesian optimization and tpe algorithms.

• MaxFailedTrialCount: specify the max the tuning with failed status

• MaxTrialCount: specify the limit for the hyper-parameters sets can be generated.

• Objective: Set objetiveMetricName and additionalMetricNames.

• ParalleTrialCount: how many set of hyper-parameter to be tested in parallel.



Fields in Experiment's spec

• TrialTemplate: Your model should be packaged by image, model's hyper-parameter 
must be configurable by argument or environment variable.

• Parameter: defines the range of the hyper-parameters you want to tune your model.
• MetricsCollectorSpec: The metric collectors for stdout, file or tfevent. Metric collecting 

will run as a sidecar if enabled.



Trial
• Katib internally generate a Trial CR, it is for internal logic control.



Suggestion
• Katib internally create a suggestion CR for each experiment CR. It includes 

hyper-parameter algorithm name and how many sets of hyper-parameter 
katib is asking to be generated by requests field.



Conti. Suggestion



Katib controller flow(step1 to 3)

1. A experiment CR is submitted to K8S API server; Katib experiment mutating and validating webhook will 
be called to set default value for the Experiment CR and validate the CR.

2. Experiment controller create a suggestion CR

3. Suggestion controller create the algorithm deployment and service based on the new suggestion CR



Katib controller flow(Step4 to 6)

4. Suggestion controller verifies the algorithm service is ready;

generates spec.request - len(status.suggestions) and append them into status.suggestions

5. Experiment controller detects the suggestion CR has been updated, generate each Trial for each new hyper-
parameters set

6. Trial controller generates job based on runSpec manifest with the new hyper-parameter set.



Katib controller flow(Step7 to 9)

7. Related job controller (k8s batch job, kubeflow pytorchJob or Kubeflow TFJob) generated Pods.

8. Katib Pod mutating webhook to inject metrics collector sidecar container to the candidate Pod.

9. Metrics collector container tries to collect metrics from it and persists them into Katib DB backend.



Katib controller flow(Step10 to 11)

10. When the ML model job ends, Trial controller will update corresponding Trial CR's status.

11. When a Trial CR goes to end, Experiment controller will increase request field of corresponding 
suggestion CR, then go to step 4 again. If it ends, it will record the best set of hyper-parameters 
in .status.currentOptimalTrial field.



Demo

Demo



Thank you!
Further Resources

• Distributed Training:
• https://github.com/kubeflow/tf-operator
• https://github.com/kubeflow/pytorch-operator
• https://github.com/kubeflow/mpi-operator

• Katib
• https://github.com/kubeflow/katib

https://github.com/kubeflow/tf-operator
https://github.com/kubeflow/pytorch-operator
https://github.com/kubeflow/mpi-operator
https://github.com/kubeflow/katib

